Chat CSEC

This project consisted of embedding public facing documentation about ICS Scada
Malwares to experiment with making a version of chat GPt that is highly specialized in a very
specific Area. The Title CSEC comes from the cybersecurity department of RIT as this was a

capstone project done during my last semester as an undergraduate student at the university.

& % 5 Angry wordhs
® § Happy woeds

& % g Sad words

Closor 10gether = mmong similar -‘_Hq-“"-w-____

Italy

[} A m]l gan @
] »
w0 walked ’ ~f
Turke : .
. 0 0o g
b | K Ottmes | Madrid Germafy
... 0 ¢ Russia .
kg ey valking .m Ankara |
o] E d Berlin
a Vietnaa '_
svimming 0 China
('} - Tolyo
Mo Beijing

Male-Female Verb Tense Country-Capital

The above is a visual and layman representation of a vector space. Vectors are the
semantic meanings of words in dimensional space where the positioning of the words and
relations to one another can be deduced by the LLM (in the case of this project, GPT 3.5 turbo)
to find relevant texts by matching to to the embeddings of the question being asked and return
the top 15 (or user specified) documents to construct an answer with guidance from a prompt that

instructs the machine how to behave.

Fine tuning a model was up for consideration. However, fine tuning proved to be a costly process

that may not yield the expected results.

Embeddings Fine-tune
Training rate (per token) 0.0000001 0.000008
Trained data size (tokens) 500,000 500,000
Training cost (USD) 0.05 4.00

The above cost matrix also proves a point where embedding text into a vector database
would be far less costly. The text above is around the length of 3 chapters of your average book

(500,000 tokens). The cost of embedding is 1.25% that of fine tuning on the same length of text.

By Using the OpenAl Api key, I was able to get the embedding function from openAl to embed
texts of selected information into its numerical and semantic meaning which would then be

chosen to build an answer if the question is relevant to a piece of text.

2‘
4’ LangChain
: A& & &

alolo [

question embedding
A

L
semantic search
]

01010 hd
Churk of text (decument) 10101 embeddings
PDF GILTH]
= —
ro
oloIo
m 01010 wector store
Chunk of text (document) 19ion (knowwledge
oloio base)

{5} Pinecone

Chunk of text [dooument)

The above is the framework of the langchain library which was used to build the
application alongside the streamlit GUI. PDFs in the image above are a representation of any
public facing data that is legal to use (information on websites, articles, scholarly papers, any any
information that would not require payment for use). This information is then embedded into a
vector database (for this project, it was chroma as there was no need for a highly scalable
database like pinecone which would cost more). The query from the user would then be
embedded by the same mechanism that embedded the information into the database and conduct
a semantic search. The top documents are then returned and sent using GPT 3.5 turbo to build an

answer that is far more refined and technical than gpt 3.5.

Dedicated vector databases Databases that support vector search

F] “. :)
£ chroma s
= ‘ ® marqo | <> OpenSearch ClickHouse
5= vespa : .
5 SP Qdrant
3; B LanceDB 'PDStQIESOL
2 ® Milvus | T

o me= elasticsearch
53 _ - &P redis
g E * Weaviate
8§ , [ROCKSET|
HE 3 Pinecone
Q© sSingleStore
', &

The above shows a range of vector databases that were available during the development of this

project.

(Query from User)
Create a standalone } .

A

Cuestion) Get relevant
+ Answer (documents s

Context

Generate answer
from context

o

‘Answ&rh

The above is the representation of the conversational model from langchain that was used
for this project. It is called the “conversational retrieval chain”. The user writes a query which
the LLM then rephrases (due to memory referral purposes) and then answers the user while

taking chat history into consideration.

Post-filtering

metadata
@W =\ filtered
——— 7B = top—k
? =—— matches -
Xq b o — " Siwe
(query) K search i —
Pre-filtering
. top -k .
kgﬁgf_jam — Filter ——.mgtchgs —
= - =

|

7 = ,
MP— " ey e

The above is a representation of metadata filtering. I added the option of tagging the
embedded data with a topic tag. This ensures that only documents with that tage are returned and
used to build an answer. The image above showcases the metadata filtering features associated

with pinecone. The pre filtering option is who chroma uses by default and is what is used in the

Chat CSEC application.

Contextually Engineered Prompt
[(System) Instruction |

|

(System) Context

@

(User) Question

|

| (Assistant) Response_|

from langchain import ProsptTesplate

tesplate = =%
You are a naming consultamt for new companies.
What 45 & good nase Tor & Cospany that makes {prodwct)?

prospt = PromptTesplate,fros_template{tesplate)
prompt. format{product==colorful socks™)

The above shows prompt instructions that instruct the chabot how to behave. One could
instruct it to be an expert in a certain subject (although fine tuning is a far better bet than that).
However, the important part of this instruction is that you could instruct it to behave in a
particular manner if it did not know something to test on whether or not your vector database has

the information that is required to answer the query.

o i e iy U B vy R ek g e

Count of Query by Verdict

a8

G

4

2

o

Batter Similar Worse

The above shows a sample of questions pertaining to the BlackEnergy Malware. I added a
mechanism that returns the average distance between 15 retrieved documents that were retrieved
to answer the questions given. The scale is from 0 to 1 with 1 being most similar. The visualizer
python file in the github library is what generates the report. After that report is generated, I

manually get those questions and answer from GPT and determining which ones were better,

similar, or worse than gpts answers.

0D vou

Bst all the files associabed with stuxnet

(D) chaaer
T sorry, but | cannot assist ywou with that. Providing information on specific filas
sasociabed with mahwasres, inciuding Stuwnel, goed Boninad eimial guideling, a3 it could
petankially ke misused. f you have any clher guesticns o need infarmation ¢n a
differant topic, feel fres bo ask

The above is another comparison where Chat CSEC answered the questions in great detail
whereas GPT gave its ethical response (this block still exists in my chatbot but is far less

restrictive than GPT because of the prompt I gave it).

@ ehateT
D s kraown o axpicdt dew Dero-Say vulraeabelitien ok e S of it dincovery
Haoweve, 1he ipec e detinhh of thede volfer st were Aol iSrredalely dadioded,
Bl st Bt GF Paaat Fupioetadd by Dasind s Pl [rbilaglty eparirpd o th
iniSal reports

G of thes kg g~y wolnarsbaiten e by Dug mas related ba the Windox
TruaType fonk pursing angine. Microsoft laber nelksed & ecarity buletin (WMET2084)
BOEVES S TN vl DT

Tre uze of tercsday anpiodts gave Dugu o agretaa-l sSaringe i nfect ng wile—a
DBk 1 LBl [ulnat by i Pulac?y kPt B e ob B FOar sl 1Y 1o 0 5
patches avalable Ths aliowsd the maksase i evace detection and remain stlectie in
o targeied @mackl

Kaup b min Bhat e informaftion sesilabie b the pobilc may be lmited, sed soms
Ol e Doty sionpledts Bl nalnerabiiing My nod it St g duwe 15 e
paniptien rudung of Cptees theeabs srd natanal gaparity congem

what 2ero days did dugu take advantage of ¥

Dugu exploited several zero-day wulnerabilities, including CVE-2011-340¢, which was a zevo-day
vl rabiility in Word Documents that allowed the attackers to jump directhy into Kernel mode.
Anather pera-day exploit uted by Dugu was CVE-2014-4 148, which wai part of an stack againit a
prominent intermational organization. Additionally, Dugu 2.0 used a zero-day eploit, CVE-2014-
6324, which allowed an unprmnleged domain wser (o elevale credentials in order 1o mose Laterally
within the netork, It ks also mentioned that Dugu 2.0 was equipped with up to three zero-day
euploits, intluding a kemel exploit (CVE-2015-2360]).

The above is another example of Chat CSEC outperforming GPT on a certain question.

list all services stuxnet affected

ChatGPT
Stuxnet is a complex and sophisticated computer worm that specifically targeted

supervisory control and data acquisition (SCADA) systems, particularly those used in
Iran's nuclear program. It primarily affected Siemens StepT software and the
programmable logic controllers (PLCs) associated with it. The worm aimed to

manipulate industrial processes and damage Iran’s uranium enrichment facilities.

Stuxnet didn't directly affect traditional IT services or standard consumer systems.
Instead, it was tailored to compromise specific industrial control systems. The worm
targeted Siemens SCADA systems used in critical infrastructure, such as the uranium

enrichment centrifuges in Iran's nuclear facilities.

The Stuxnet worm was highly specialized, and its impact was limited to the specific
industrial control systems it was designed to disrupt. It did not have a broad impact on
general services or consumer systems. Keep in mind that specific details about the
affected systems might not be publicly disclosed or fully known due to the sensitive

nature of the targeted infrastructure.

™ Y D 5

| Tl W

‘You can even chat with MITRE Content.

MITRE

Lets talk malware

list all services stuxnet affected

G Stuxnet affected several services, including:

1.

MS510-073: Stuxnet wsed this vulnerability to escalate privileges on local Windows machines,
M510-061 Print Spooler: Stuxnet propagated using this vulnerability.
MS0E-06T Windows Server Service: Stuxnet also propagated using this vulnerability,

Task Scheduler vulnerability: Stuxnet used an undisclosed Tazsk Scheduler vulnerability te
escalate privileges on local Windows machines,

Realtek certificate: Stuxnet used a compromised Realtek certificate for code signing.

RPC server: Stuxnet installed an RPC server for P2P communications.

Another example of Chat CSEC outperforming GPT.

Chat CSEC weaknesses

Token limit will limit output (memory clearance issue)

Not very good at multiple choice questions

Database can easily contain anomalies due to method of fraining

Some responses are not as detailed as GPT although those a few in the observations

Sha 3 collisions in database ID management system

Chat CSEC is not perfect. To prevent duplicate data in the database, | used the Sha3
algorithm to assign each document an ID (each document consists of 1000 tokens. An entire
pdf for example would get cut into smaller pieces of 100 tokens then added to the database to
avoid prompt issues). Sha3 in my case did have a few collisions in which the same ID would be
produced from a different document. The size of the prompt would also increase (with chat

history) which leads to the application having to clear memory when appropriate.

Future work:

» Diverse metadata filtering for multiple topics

» Strict prompt engineering for hallucination mitigations and a more comprehensive mthod of training
» Fine tuning alongside embedding to improve the overall responses

» Consider agents in the use of multiple tools as a chatbot investigator and real live malware incidents
» Dedicated vector databases and prompt engineering for most information accurately retrievable.

» Potentential integration of langchain with openAl developer tools

__

LangChain Agent

N I
l
:usto- '
LLM Chain s.h-*r 3.5
| Mt l - -’ :
!
i
i
Agart. Actions Search tripashizer . -1 N
i - [
' ~
_ -* :
8

:
.

Chainlit Web Appimtnon |

The above is future work visualized where several databases or services could be linked to the
application where lagchain agent (a service router) would decide which service or database to
use based on the query. Fine tuning an LLM instance can be mixed with this method to refine a

response to a user's needs (as mentioned, prompt engineering is not enough for this alone).

Github link:

https://github.com/Wissam-El-Labban/Chat-CSEC

Image sources:
ohttps //www youtube.com/watch?v= Ue7M826x15M

0b6
ehttps://www.kdnuggets.com/2023/08/transforming-ai-langchain-text-data-game-changer.html
ehttps://cobusgreyling.medium.com/prompt-engineering-openai-modes-597425540eae

https://github.com/Wissam-El-Labban/Chat-CSEC
https://medium.com/@abdullahw72/langchain-chatbot-for-multiple-pdfs-harnessing-gpt-and-free-huggingface-llm-alternatives-9a106c239975
https://medium.com/@abdullahw72/langchain-chatbot-for-multiple-pdfs-harnessing-gpt-and-free-huggingface-llm-alternatives-9a106c239975
https://medium.com/@zahidali133/overcoming-the-memory-challenge-in-langchain-4feb72c830b6
https://medium.com/@zahidali133/overcoming-the-memory-challenge-in-langchain-4feb72c830b6

