
Chat CSEC

This project consisted of embedding public facing documentation about ICS Scada

Malwares to experiment with making a version of chat GPt that is highly specialized in a very

specific Area. The Title CSEC comes from the cybersecurity department of RIT as this was a

capstone project done during my last semester as an undergraduate student at the university.



The above is a visual and layman representation of a vector space. Vectors are the

semantic meanings of words in dimensional space where the positioning of the words and

relations to one another can be deduced by the LLM (in the case of this project, GPT 3.5 turbo)

to find relevant texts by matching to to the embeddings of the question being asked and return

the top 15 (or user specified) documents to construct an answer with guidance from a prompt that

instructs the machine how to behave.

Fine tuning a model was up for consideration. However, fine tuning proved to be a costly process

that may not yield the expected results.

The above cost matrix also proves a point where embedding text into a vector database

would be far less costly. The text above is around the length of 3 chapters of your average book

(500,000 tokens). The cost of embedding is 1.25% that of fine tuning on the same length of text.

By Using the OpenAI Api key, I was able to get the embedding function from openAI to embed

texts of selected information into its numerical and semantic meaning which would then be

chosen to build an answer if the question is relevant to a piece of text.



The above is the framework of the langchain library which was used to build the

application alongside the streamlit GUI. PDFs in the image above are a representation of any

public facing data that is legal to use (information on websites, articles, scholarly papers, any any

information that would not require payment for use). This information is then embedded into a

vector database (for this project, it was chroma as there was no need for a highly scalable

database like pinecone which would cost more). The query from the user would then be

embedded by the same mechanism that embedded the information into the database and conduct

a semantic search. The top documents are then returned and sent using GPT 3.5 turbo to build an

answer that is far more refined and technical than gpt 3.5.



The above shows a range of vector databases that were available during the development of this

project.



The above is the representation of the conversational model from langchain that was used

for this project. It is called the “conversational retrieval chain”. The user writes a query which

the LLM then rephrases (due to memory referral purposes) and then answers the user while

taking chat history into consideration.

The above is a representation of metadata filtering. I added the option of tagging the

embedded data with a topic tag. This ensures that only documents with that tage are returned and

used to build an answer. The image above showcases the metadata filtering features associated

with pinecone. The pre filtering option is who chroma uses by default and is what is used in the

Chat CSEC application.



The above shows prompt instructions that instruct the chabot how to behave. One could

instruct it to be an expert in a certain subject (although fine tuning is a far better bet than that).

However, the important part of this instruction is that you could instruct it to behave in a

particular manner if it did not know something to test on whether or not your vector database has

the information that is required to answer the query.



The above shows a sample of questions pertaining to the BlackEnergy Malware. I added a

mechanism that returns the average distance between 15 retrieved documents that were retrieved

to answer the questions given. The scale is from 0 to 1 with 1 being most similar. The visualizer

python file in the github library is what generates the report. After that report is generated, I

manually get those questions and answer from GPT and determining which ones were better,

similar, or worse than gpts answers.



The above is another comparison where Chat CSEC answered the questions in great detail

whereas GPT gave its ethical response (this block still exists in my chatbot but is far less

restrictive than GPT because of the prompt I gave it).

The above is another example of Chat CSEC outperforming GPT on a certain question.





Another example of Chat CSEC outperforming GPT.



Chat CSEC is not perfect. To prevent duplicate data in the database, I used the Sha3

algorithm to assign each document an ID (each document consists of 1000 tokens. An entire

pdf for example would get cut into smaller pieces of 100 tokens then added to the database to

avoid prompt issues). Sha3 in my case did have a few collisions in which the same ID would be

produced from a different document. The size of the prompt would also increase (with chat

history) which leads to the application having to clear memory when appropriate.

Future work:

►Diverse metadata filtering for multiple topics

►Strict prompt engineering for hallucination mitigations and a more comprehensive mthod of training

►Fine tuning alongside embedding to improve the overall responses

►Consider agents in the use of multiple tools as a chatbot investigator and real live malware incidents

►Dedicated vector databases and prompt engineering for most information accurately retrievable.

►Potentential integration of langchain with openAI developer tools



The above is future work visualized where several databases or services could be linked to the

application where lagchain agent (a service router) would decide which service or database to

use based on the query. Fine tuning an LLM instance can be mixed with this method to refine a

response to a user's needs (as mentioned, prompt engineering is not enough for this alone).

Github link:

https://github.com/Wissam-El-Labban/Chat-CSEC

Image sources:
●https://www.youtube.com/watch?v=Ue7M826xj5M
●https://medium.com/@abdullahw72/langchain-chatbot-for-multiple-pdfs-harnessing-gpt-and-fre
e-huggingface-llm-alternatives-9a106c239975
●https://medium.com/@zahidali133/overcoming-the-memory-challenge-in-langchain-4feb72c83
0b6
●https://www.kdnuggets.com/2023/08/transforming-ai-langchain-text-data-game-changer.html
●https://cobusgreyling.medium.com/prompt-engineering-openai-modes-597425540eae

https://github.com/Wissam-El-Labban/Chat-CSEC
https://medium.com/@abdullahw72/langchain-chatbot-for-multiple-pdfs-harnessing-gpt-and-free-huggingface-llm-alternatives-9a106c239975
https://medium.com/@abdullahw72/langchain-chatbot-for-multiple-pdfs-harnessing-gpt-and-free-huggingface-llm-alternatives-9a106c239975
https://medium.com/@zahidali133/overcoming-the-memory-challenge-in-langchain-4feb72c830b6
https://medium.com/@zahidali133/overcoming-the-memory-challenge-in-langchain-4feb72c830b6

